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Multigrid Solution of Monotone Second-Order 
Discretizations of Hyperbolic Conservation Laws 

By Stefan Spekreijse 

Abstract. This paper is concerned with two subjects: the construction of second-order accurate 
monotone upwind schemes for hyperbolic conservation laws and the multigrid solution of the 
resulting discrete steady-state equations. By the use of an appropriate definition of monoton- 
icity, it is shown that there is no conflict between second-order accuracy and monotonicity 
(neither in one nor in more dimensions). 

It is shown that a symmetric block Gauss-Seidel underrelaxation (each block is associated 
with 4 cells) has satisfactory smoothing rates. The success of this relaxation is due to the fact 
that, by coupling the unknowns in such blocks, the nine-point stencil of a second-order 2D 
upwind discretization changes into a five-point block stencil. 

1. Introduction. To obtain solutions of first-order finite-volume upwind schemes 
for the 2D steady Euler equations, nested nonlinear multigrid (FMG-FAS) iteration 
has proved to be a very efficient solution process .[6], [7]. Encouraged by this 
successful application of nonlinear multigrid, it is natural to ask whether it is 
possible to use nonlinear multigrid for the efficient solution of second-order 
finite-volume monotone upwind schemes as well. 

To answer this question, we have to discuss the following subjects: how to 
construct a second-order montone upwind scheme and how to choose the nonlinear 
multigrid components such as the relaxation method, the restriction and prolonga- 
tion operators, and the coarse grid operators. 

Because of the complexity of the Euler equations (a hyperbolic system of con- 
servation laws), we start analyzing these subjects for the less complicated scalar 
hyperbolic conservation laws. Scalar hyperbolic conservation laws are interesting by 
themselves and, without the complexity of hyperbolic systems, the analysis is more 
complete and more transparent. The results of the scalar analysis can be generalized, 
in a straightforward manner, to systems of hyperbolic conservation laws such as the 
Euler equations. We will report on this in a separate paper. 

In Section 2 we describe the construction of second-order monotone upwind 
schemes. By using a definition of monotonicity based on positivity of coefficients, it 
is shown that there is no contradiction between monotonicity and second-order 
accuracy (neither in one nor in more dimensions). We emphasize that the concept of 
monotone schemes used in this paper is not equivalent with the definition of 
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monotone schemes by Harten, Hyman, and Lax [4]. It can easily be seen that the 
constructed schemes are TVD (Total Variation Diminishing) [5] in one dimension 
but not in two or more dimensions. This agrees with the result of Goodman and 
LeVeque which states that TVD schemes in 2-dimensions are at most first-order 
accurate [3]. Much attention is payed to the construction of a limiter. Because of its 
smoothness, the van Albada limiter [12] appears to be the most attractive one. 

In Section 3 we show what nonlinear multigrid method we apply. In the multigrid 
method, a good relaxation process is of crucial importance. A block Gauss-Seidel 
underrelaxation (with X = 0.5) appears to be a satisfactory smoothing operator. 

In Section 4 numerical results are shown. Excellent steady solutions are obtained 
for linear problems with contact discontinuities and for nonlinear problems with 
shocks. As in the first-order case, multigrid appears to be an efficient solution 
process. 

In the last section some conclusions are listed. 

2. The Construction of a Second-Order Monotone Upwind Scheme. Consider the 
following nonlinear scalar hyperbolic conservation law 

(2.1) yaU + aAf(u) + a g(u) = 0. 

Suppose that the flux functions f(u) and g(u) can be split in positive and negative 
parts, i.e., 

(2.2) f () = f+(U) + f-(U), g(u) = g+(u) + g-(u), 

where 

(2.3) g?f (u) 0 g uf-(u) < ? Vu Ef R 

do + (t) 0? dU g ua 0 V Mu E- Rk. 

To discretize (2.1), we apply the finite-volume technique. Thus, the discrete values of 
u are associated with cell centers and are regarded as approximations of the mean 
value of u in each cell. To avoid technical details, we discretize (2.1) on an 
equidistant grid with mesh size h. Furthermore, the space discretization is based on 
the Projection-Evolution approach [14], [15]. Because we are only interested in 
steady-state solutions of (2.1), the simplest time discretization is used, ice., "forward 
Euler". (Later, the time dependency in the discretized form of (2.1) is dropped, and 
multigrid is used to solve the nonlinear time-independent system of discretized 
equations directly.) Hence, (2.1) is discretized by 

n+ = Un + At[ f+( u_2.) -f+ (U +2,)} 
"ii~ h - X2j 12,) 

+ {11(uAi-1/2,j) f iLi7,,)}] 
(2.4) At r1, 

h L 9'(UiJ-1/2) ' (U,+1/2)) 

+{g(L~j'i-72 -g-(L};+ 1/2flj, 
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where 

U-n/ = U;n + I -n)(Un Un 1) , 

(2.5) M 172,J = UIj+ 
P ( R7n )(j- U+1 U,+ 12j Ui.+ 2 l(RSl J(I I lJ1 

UJn = U + 2 I U;-112j =Ili 2 jn )Ui; - 

and 

(2.6) R. = L/inJ' 
i 

n S - = Ul___ I_ 

Un - Un Ili Un. - U 

and 4: RR | D0 is a continuous function called the limiter. The value UIl is a 
numerical approximation of the mean value of u in cell (i, j) at time t = n1At, so 

(2.7) Un f(i?/2)h f(?1/2)h U(,q, n t) dX dq. 
h (i-1/2)h (j-1/2)h 

The values UI+ 1/2,X, Uii+ 1/2,J are approximations of 

h t -;2)hU ((i+ 2 h, X, n At )d A, 

located at the left and right side of the cell wall (i + 1/2, j). See Figure 2.1. 
The limiter 4 = A(R) is introduced in the discretization in order to construct a 

monotone, spatially second-order scheme. The limiter is a function of the consecu- 
tive gradients, a common practice in this field [2], [11], [13]. Notice that in (2.5) 

0 corresponds to the first-order upwind scheme while 4 1 yields the fully 
one-sided second-order upwind scheme. We define a monotone scheme as follows. 

y+1 

U+? 

Ii+ ?1 

U, _ l, U7,J1 U. +I/2,j L-'j U? 1/21j U,++ 42,j U. + ,J 

Il - ?12 

U"I - I 

FIGURE 2.1 
Location of the several variables in the space discretization. 
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Definition. Consider a discretization of (2.1) given by 

) U, I+ 1 = u A jIli - Bi+1/2 (Uij+1 Uln 

(C _ 1/2j ( U. I- U;i I) + Dinj-1/27(U 1- U; I), 

where 

An = (...'Uln 1J.J Uln Uln+, **) Ai+ 1/2,j 
=A I-. Ij, u I, uJ?1j' 

(2.9) Bnij+1/2 =B( ..., Ui(JUAI, Ulnij? I . 

Cin-1/2 = C(. ,' UVi- J U;J U J 

Ili - 1/2 =I(. liJ1 Uli IJ Un+1 . .. ) 

Scheme (2.8) is called monotone if 

(2.lOa) A7n1/2J >0, Bn +1/2 >0, G1n1/2J >0, DC n_1/2> 0 

and if 

(2.10b) 1 -Ain 1/2 j-B - - JD1nJ 2 > 0. 

This definition of monotonicity is especially useful for the steady-state problem, as is 
shown by the following theorem. 

THEOREM 2.1. If scheme (2.8) is monotone, then a steady-state solution of (2.8) is 
monotone, i.e., 

Min(U. 1 j' U1+1'j' U1 J-j U1 J+1) < U,,J < max(U,-,,J. U,+,,J. Ul j-1, Ul) 

where { U, J } denotes a steady-state solution of (2.8). 

Proof. From (2.8) we see that 

Ai+112JU+I+1 J+ BlJj+1/2UISj+l + C j D1/2J1J + I 
A J i1/2 J + B +1/2 + C-1721 +D 1/2 

which, owing to the positivity of the coefficients, proves the theorem immediately. R 
We wish to show under what conditions scheme (2.4) is monotone. It can easily be 

seen that scheme (2.4) can be written as (2.8) by taking 

= - 
t fi(Uii7/2,J) -f ( ii21/2J) U; + /2,J - U / +l/2~~A f- h U+n/ f- (U+nl/ n U - n n I + 

112, 
- I;-17 

2, 
j U 

;?+12,j 1-, 

Ai+112j - +At f (Unij J) nf(U; /2,J) U;?172,J - Un-172,J 
(2.11) '-1/2?'- h 1l/2,j - U;I -2, U, + 

I 

At gL (Un 1/2)- (Un 1 n U- I - - h 1/2- /2) U~ir/2- UIl/ 

h ~~~U-n Un - Un 

- At - + g(U 12 1/2) U711+l/2- U; 1 1 
1/2 ij -1/2 Uj +1/2- U, -1/2 UTTj- UT I 
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To obtain positivity of the coefficients A7+?12,J. B/1J~1/2, etc., it is sufficient (by the 
Mean Value Theorem) that 

U, + 112,j i- 1/2,j U 0 + 1/2, -1/2,j 

~~ -U~~ > 0, Un-n 0, 

,ij+112 Ui j -1/2 > IJ+ 12U, -/ (2.12) Ui~n+172 - LJ~,J1/ - 
,12 j- / '0 

un u n 0,- U0. 
UiJ+?1 UiJ UI 7 I U J-1 

Furthermore, inequality (2.10b) is fulfilled by taking At sufficiently small, while 
assuming uniform boundedness of the derivatives of f+(u), f-(u), g+(u) and 
g-(u), and taking care that the left-hand sides of the inequalities in (2.12) are also 
uniformly bounded. 

By substitution of (2.5) in (2.12) it is easily seen that (2.12) is fulfilled if 

(2.13) 1 + 2 (R)-2-#(S) j> VR,S E R. 

Furthermore, the uniform boundedness of the left-hand side of the inequalities in 
(2.12) is obtained by requiring 

(2.14) P(R)-#4(S)* < 2M V R, S el R, M e (0, x). 

So, (2.1) is a monotone scheme if the limiter 4 = t4(R) satisfies the property that 

(2.15) -2 < A(R)-#4(S) j < 2M VR, S e R. 

This inequality is satisfied if 

(2.16a) a < (R) < M V R Cz R 

and 

(2.16b) -M < (R) < 2 + a VR Ez R. 

The monotonicity region given by (2.16) is depicted in Figure 2.2. We assume 
a C [-2,0]. 

4 ' 4, + /+ =(2+a)R 

4M 

4, MR~~~ 

FIGURE 2.2 
Monotonicity region. 
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We have thus found the following theorem. 

THEOREM 2.2. If the limiter 4 = A (R) has the properties that there exist constants 
M E (0, so), a e [-2,0] such that a < + (R) < M, -M < 4)(R)/R < 2 + a for all 
R Ei R, then (2.4) is a monotone scheme. 

One of the direct consequences of Theorem 2.2 is that 4(0) = 0. Notice that 
4 0, which corresponds to the first-order upwind scheme, results in a monotone 
scheme, as we should expect. 

Now, we wish to investigate under which condition scheme (2.4) is second-order 
accurate with respect to the space discretization. Define 

Ui_+ 2= UIj + 2(Ui'j- ui-,,J)9 

Ui+1/2,j = Uij + 2 -4(R_1)(Ui} - 

(2.17) U7,=u,1+ - 

(2.17) Ul~Cj+- 1/2, _ =UiJ + 2 (UiJ - ui+l,J)9 

U-1/2,j= i'j+ 2)R ( (Ui)i, U-+I1,j) 

with similar formulas for Lij?1/2 and Uij?+1/2. Notice that the U-values correspond 
to Ap(R) 1, the fully one-sided upwind case, which gives a second-order accurate 
space discretization. 

LEMMA 2.1. If the limiter 4 = 4(R) is constructed such that 

(2.18a) UQ+112,j - Ui- 1 =2,j = Ul+112,j 
- Ui- 12,j + 0(h3) 

and 

(2.18b) 2= Qil2,1 + 0(h2), 

where U J, 1 j71/2 etc. are given by (2.17), then (2.4) is second-order accurate 
with respect to the space discretization. 

Proof. This lemma is a direct consequence of the formulas (2.30) and (2.31) 
derived in [10]. E 

From (2.17) we see that 

(2.19) Ul+1/2,j= ii+1/2,j + 2(4(Rj,_) - 1) -(Uij - U>1,). 

Furthermore, by assuming that a u/ax is bounded away from 0, we see that 

(2.20) R - + - - + 0(h). 

Hence, using (2.20), we can write 

(2.21) 4)(RI,)= 4(1)+ d4(1) (Rj-1) + 0(h2), dR()(1 
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where we assume that +(R) is twice continuously differentiable in a neighborhood 
of R = 1. So, if 4(1) = 1, we immediately see from (2.19)-(2.21) that (2.18b) holds. 
Furthermore, if 4(1) = 1, then also 

U~~1721 =(j- Ild4) ( 
l~ 2i~ UIl 

U+ 1/2,j =Ui+?1/2,j + 2 dR (Uij + Ui - 1 )' 

(2.22) (Ui - Ui_1j) + 0(h3) 

~~~ + ld4)~ ~ 2 +0 h) 
= ? 1/2, 2 dR (1)(u?1, - 2LU1 + Ii + (h3). 

From (2.22) it is easily seen that also (2.18a) holds. Therefore we may conclude that 
4(1) = 1 is a sufficient condition to obtain a second-order space discretization. 

THEOREM 2.3. If A)(1) = 1 and if 4 Ee C2 in a neighborhood of 1, then scheme (2.4) 
is second-order accurate with respect to the space discretization. 

COROLLARY 2.1. Scheme (2.4) is linear if A(R) = a + bR, a, b E R. From 
Theorems 2.2 and 2.3 it is easily seen that no linear schemes exist that combine the 
property of second-order accuracy and monotonicity. 

Examples of limiters combining the property of second-order accuracy and 
monotonicity are: 

Example 1. The van Leer limiter [11], [13], [14] 

(2.23) 4)VL(R) = R + R1 

By taking M = 2 and a = 0 it is easily seen that this limiter satisfies the monotonic- 
ity restriction (2.16). Because #vL(l) = 1, second-order accuracy is obtained. 

Example 2. The van Albada limiter [12] 

(2.24) 4VA(R) = R2 + R 

By taking M = 2 and a = - 2, it is easily seen that this limiter combines monoton- 
icity with second-order accuracy. Another advantage of this limiter is that 4VA vE 

C?(R). This is an important property when we apply Newton's method (local 
linearization) in a relaxation procedure for the solution of the steady-state discrete 
equations. 

For a review of other limiters, see [11]. But notice that a limiter k(r) of [11] is 
related to 4(R) by R = 1/r, 4(R) = R4(r). A limiter k(r) of [11] is only 
algebraically identical with 4i(R) if 4 ( R)/R = 4 (1/R). For our numerical experi- 
ments in Section 4 we have chosen van Albada's limiter because of its smoothness. 

Remark 2.1. It has been observed [9], [14] that second-order accuracy can be 
achieved by assuming a linear distribution in each cell, rather than the uniform 
distribution associated with first-order schemes. In a cell, a linear distribution in the 
x-direction is achieved if 

ui+1/2,j 
- 

Uij = Uij 
- U- 1/2,j; 
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similarly in the y-direction. Using (2.17), this means 

+(R-,j)(Ui,-ui-) = + ( R )(ui+l; - Uij 

or, equivalently, 

| (RiJj 
lRi,j R Ri,J 

Thus, if a limiter satisfies 

(2.25) ( VRe ), 

we can speak of linear distributions in each cell. It can be verified that both 4 VL and 

4VA possess this property. This is no coincidence: They were designed that way. 
Notice that if a limiter 4 = +(R) satisfies (2.25), then the monotonicity conditions 
(2.16) are equivalent to 

(2.26) a < +(R) <M, -M < +(R) < 2 + a VR EE R. 

Formula (2.25) implies 41(0) = 0, hence a E [-2, 0]. By taking M = 2, (2.26) 
becomes 

a < +(R) < 2 + a VR ER 9, 

which means 

#max -min < 2, 

where 

max = max ( (R)), min =minm (4 (R)). RGeR RGeR 

Hence, we have found the following result. 

THEOREM 2.4. If a limiter 4 = +(R) has the property 4(1/R) = 4(R)/R, then 
scheme (2.4) is monotone if /max - Pmin < 2. 

Remark 2.2. We will use Newton's method (local linearization) in the relaxation. 
Therefore, we have to linearize the limiter. It can easily be verified that 

Ui+1/2 
= Ui - I1(Ri)(U, -U,1) 

with 

R =Ui +1- Ui 
U - 

implies 
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where 

a(R) = -2(R) + R dR (R), 

(2.27b) 8(R) =1 + 2A(R)- I(1+ R)dR(R), 

y(R) = 2 dR(R) 

So we see that the derivative of Ui+1/2with respect to U, -' U, or U, + only depends 
on Ri! 

Remark 2.3. To avoid any confusion, we wish to emphasize that in this article the 
monotonicity is obtained by multiplying the backward differences with A(R), i.e., 

Ui =u+ 
1 = I(R,')(u - U>_1J), 

(2.28) 1 ( 1 

I- 112,j = U J+ 2+t RJ (U1 j - ui+,,,). 

Another possibility, often encountered in the literature, is 

(2.29) = U + 1j4R,)( (J?1-J + 2U)' U 1,) 

=1+12, l + I<li)( + L9 2 (,J( 2 2 ) 

It can be verified that both descriptions are equivalent if 

(2.30) (R) (R) 
_ 2 ) 

The preceding results show clearly that, from a theoretical point of view, description 
(2.28) is preferable to description (2.29). 

3. Multigrid Solution. In this paper, as noted before, we are primarily interested in 
monotone second-order accurate steady-state solutions of (2.1). Therefore, we omit 
the superscript n in (2.4)-(2.6), and we wish to solve 

(LhU)l : h [{f+ (u+112,,) -f+(Ul 112,,)) 

+ -(Ul+ 
11,j) 

-f (U+ 
112,j)l 

(3.1) + - 

? +U,+12 {g (u+(UI1-/2)1g(lJl2 

=( rh )j l 

directly. Here rh 0 and h denotes the meshsize of the finest grid. Note that in (3.1) 
we multiply with the meshsize h instead of dividing by h, as was done in (2.4). By 
doing this, (Lhu), , receives the physical meaning of "net flux" into cell (i, j). This 
is a more appropriate quantity when dealing with nonuniform grids. 
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For the multigrid solution of (3.1) and the multigrid terminology used, we refer to 
[1]. A nonlinear (FAS) multigrid solution of (3.1) is obtained by applying, iteratively, 
FAS-cycles. One FAS-cycle for the solution of (3.1) consists of the following steps: 

(0) Start with an approximate solution Uh. 

(1) Improve Uh by application of p (pre-) relaxation iterations to (LhUh) = rh. 

(2) Compute the defect dh = rh - LhUh. 

(3) Find an approximation U2h of Uh on the next coarser grid; u2h:= Ihhuh, 

where Ihh is a restriction operator. 
(4) Compute r2h = L2hu2h + Ih2hdh, where jh2h is (another) restriction operator 

and L2h is the coarse-grid operator (an approximation of Lh on the next coarser 
grid). 

(5) Approximate the solution of 
L2hU2h = r2h 

by application of a FAS-cycles, starting with the initial estimate U2h = I4hUh. The 
result is called U2h. 

(6) Correct the current solution by 

Uh = Uh + 12h(u2h - U2h) 

where '2h is a prolongation operator. 
(7) Improve uh by application of q (post-) relaxation iterations to LhUh = rh. 

The steps (2)-(6) in this process are called "coarse-grid correction". In order to 
complete the description of the FAS-cycle, we have to discuss 

(0) the relation between the fine and coarse grid; 
(1) the choice of the operators L2 IIh, 7h, and j2h; 

(2) the relaxation method; 
(3) the FAS-strategy, i.e., the numbers p, q, a (a = 1 characterizes a V-cycle, 

a = 2 a W-cycle). 
We now discuss these topics. 
(0) Fine-grid construction. A finer grid is constructed from a coarser one by 

subdivision of a coarse-grid cell in 4 smaller cells as shown in Figure 3.1. 
(1) Choice of the operators. The restriction operator Ih% is defined by 

(3.2) u2h)li = (i2hu) 

: {(Uh)2l,2 +(Uh)2i-1,2j + (Uh)2i,2j-1 + (Uh)2i-1,2j-1} 

(2i-1,2j) (2i, 2j) h 

(i,j) 2h 

(2i-1,2j-1) (2i,2j-1) h 
By 

2h h h 

X 

FIGURE 3.1 
The subdivision of a coarse-grid cell in four fine-grid cells. 
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The restriction operator I 2h is defined by 

(3.3) (r2h) i, = ( I2hrh)i y = (rh)2i,2j + (rh)2i-1,2j + (rh)2,,2j-1 + (rh)2-1,2j-1 

The prolongation operator J2h is defined by 

(3.4) ~~~ I2hU2h)2i ,2X:( I2hU2h)2i-1 ,2X:=( I2hU2h)2 ,2j-1 

:=2( I2hu*)2i--1,2j-1= ( U2h) Z ,j 

The coarse-grid operator L2h is defined by a Galerkin approximation 

(3.5) L2 = Ih2 hL Ih 

Then the following theorem can be proven. 

THEOREM 3.1. If the restriction and prolongation operators jhh and '2h are defined 

by (3.3) and (3.4), and if the coarse-grid operator L2h is defined by the Galerkin 
approximation (3.5), then the coarse-grid operator corresponds to the monotone first- 
order discretization (4 0) of the continuous problem on the coarser grid. In other 
words, 

(3.6) (L2hU)ij = 2h[{f+(u,1 j)-f(U,)} +{f(u+ {fu,?U ) )-f(U,) f )} 

+ { g9(+u1) - g+(u,11,i)} + { g (ulj+1 ) -g (u,,)] 

This is independent of the limiter used in (3.1)!. 

Proof. The proof of this theorem is left as an exercise to the reader. We only wish 
to remark that for a (fine-) grid distribution { uh }),, with the property 

(Uh)2i,2j 
= (Uh)2i-1 ,2J= (Uh)2,2J-1 

= (Uh)21-1,-1 V(i, j) 

there holds 

(uh)I71/2,= (ui),j+1?/2 (uh) -1/2,j (uh),J-1/2 (uh)IJ V(i, j), 

where (uh) ?1/2 ,, (uh)~j?1/2, (uh)iil/2,J and 
(Uh)t+-1/2 

are calculated according to 
(2.5), (2.6) (omitting the superscript n). This result is due to the fact that the limiter 
4 = 4 (R) is uniformly bounded and 4 (0) = 0. O 

This theorem has an important practical consequence. We already know that 
nonlinear multigrid is a good solution method for the first-order upwind scheme [6], 
[7]. Therefore we may expect to have no problems in the solution procedure on the 
coarser grids. 

(2) The relaxation method. As noted before, it is our purpose to apply the methods 
developed in this paper to systems of hyperbolic conservation laws, e.g., the Euler 
equations. Now, it is well known that symmetric point Gauss-Seidel relaxation is a 
good relaxation method in the nonlinear multigrid solution procedure for the 
first-order system of the steady Euler equations in 2D, but not for the second-order 
discrete system [6], [8]. Even for the simple scalar model problems discussed in 
Section 4, point relaxation methods did not work well. An explanation is that, for 
second-order discretizations of steady hyperbolic problems, a Gauss-Seidel point 
relaxation in the upstream direction causes amplification of the error (which does 
not happen for first-order discretizations). This is the reason why we shall investigate 
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a block Gauss-Seidel relaxation, rather than a point relaxation. We shall require that 
no amplification of the error should occur when the block Gauss-Seidel relaxation 
has the upstream direction. 

How do we choose the blocks? Notice that by (3.1), nine variables u1j, u,1?1J, 

u?+2,j Ui,j+1 Ui,j+29 Ui-l,j9 U-2,j Uj,j-1, and uj-2 are coupled. Therefore, we 
have a nine-point stencil. On the other hand, if we combine U212j, U2,-12j, U21 

2j-19 

and u2i- 1,2j- Ito an unknown vector Ui j as 

(3-7) Ui j ::- 
(U2i,2j U2i-1,2p U2i,2j-19 U2i-1,2j-1)T 

and if we replace system (3.1) by an equivalent system with unknowns { Jj}, then 
we see that each equation in this new system corresponds to a five-point block 
stencil, i.e., U j is only coupled to UL+; ,J UiLj+1 Ui-1 J. and U;,j-1. For this reason, 
we consider the cells (2i, 2 j), (2i - 1, 2 j), (2i, 2 j - 1), and (2i - 1, 2 j - 1) as one 
block. Thus, in our block Gauss-Seidel relaxation, the blocks of unknowns are 
scanned in succession and for each block the corresponding equations are solved 
simultaneously. We use Newton's method to solve these four nonlinear equations in 
each block. 

In the following example we use local mode analysis to investigate whether our 
block Gauss-Seidel relaxation amplifies the error when the blocks are scanned in the 
upstream direction. 

Example. Consider the ID problem 

(3.8) au + aa = a > 0. 

With the second-order discretizations as described in Section 2, the system of 
discrete steady-state equations becomes 

(3.9) (Lhu), a[ui + ((Rj)(uj - u,-l) 

-{ u,_ + p+(RI)(u,_1 -U,-2)}] = 0. 

Without a limiter (4 1) we obtain 

(3.10) (Lhu)i = a[3ui - 4u,_1 + u-2] = 0, 

where a = a/2. This system is now equivalent to 

(3.11) (LU)i = a( 3 4 
Ui +(I 1) i_ 0) 

where UL = (u2i, u2i- 1)T. 

If we apply to this new system point Gauss-Seidel relaxation (which corresponds 
to block Gauss-Seidel relaxation for system (3.9)) in the downstream direction, it is 
immediately clear that an exact solution is obtained in a single iteration sweep. 

Gauss-Seidel relaxation in the upstream direction gives 

(3.12) a( 3 4) 4 i +( - )uI1n }=? 

where n is the iteration index. Suppose Ukn = Ae'Ok, Ukn+1 = G(6)Ukn, where 6 E 

[- g, g ] and A is an arbitrary vector with 2 components and G(0) a 2 X 2 matrix. 
From (3.12) it is seen that 

(3.13) (0 4 )G()+(14 ?)e i =0 , 
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and the eigenvalues of G(6) are VG(O) = e-0 and X2 I() e-@'. Hence the 
spectral radius of G(0) is equal to 1 for all 6 E [- 7, 4r], and the smoothing factor 

yG, defined by 

(3.14) MG /maax (AG)1 |AG( | 
is also equal to 1. The smoothing factor AG can be improved by underrelaxation. 
This means that (3.11) is replaced by 

(3.15) {(( 3 4)i +(_4 1 U),n 1} = , 

n+1 := Un + 1 - Un), 

where w E [0, 1]. Again, assume that Uk =AelOk and Ukn+' = G,()Ukn; then 

(3.16) G,() = (1 - w)I + wG(6), 

and the eigenvalues of G,(6) are X1? (6) = 1 - X + cox'G(0). The optimal (smallest) 
smoothing factor IG is obtained by X = 0.5; then 

MC = ?12 +il= 
= 0.71. 

From this example we see that X = 1 and w = 0.5 are optimal choices for the block 
Gauss-Seidel underrelaxation method in the downstream and upstream direction, 
respectively. Since we wish to use a problem-independent relaxation method, a fixed 
X is used for all problems and all directions. In the context of the multigrid method 
where a single symmetric block Gauss-Seidel underrelaxation was used both in the 
pre- and the post-relaxation, it is shown by numerical experiments that in general 
X = 0.5 is a better choice than X = 1.0. 

(3) The FAS-strategy. We take p = q = 1. Due to the fact that the coarse-grid 
equations are first-order accurate (cf. Theorem 3.1), each coarse-grid equation 
(4 - 0) corresponds to a five-point stencil. Therefore, we use a simple symmetric 
point Gauss-Seidel relaxation on the coarse grids, and so we can afford to apply 
W-cycle FAS-iterations (i.e., a = 2). 

4. Numerical Results. For the numerical experiments in this section we have 
applied the multigrid method described in Section 3. 

In case of linear problems, the first-order scheme (4 0) is linear but, due to the 
nonlinear van Albada limiter, the second-order scheme is nonlinear. On the coarse 
grids we always deal with first-order schemes (cf. Theorem 3.1). Hence, for linear 
problems, the coarse-grid equations are linear. It is easily seen that in case of the 
following linear examples (Examples 1 and 2) a single post- and pre-relaxation 
(which are symmetric point Gauss-Seidel relaxations in different directions) is 
sufficient to solve the first-order system of discrete equations on the coarser grid 
exactly. Hence, in those linear cases, the coarse-grid correction is calculated exactly, 
and just one coarser grid is needed in the multigrid process. In those cases a W-cycle 
is superfluous; a V-cycle is sufficient. 

After each FAS-iteration, on the finest grid, the L1-norm of the residuals has been 
calculated, i.e., 

IILh rhIILn = Z |(LhUn)ij -(rh),J 
(i jo) 
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where Lh and rh are defined by (3.1), n is the FAS-iteration index, U nis the current 
approximation of the steady-state solution of the second-order scheme and the pairs 
(i, j) are the cell indices of the finest grid. After n FAS-iterations we can calculate 
the approximate convergence factor pn according to 

I (ILh h rh IIL1 ) 

l11 Lh Uh' rh |L 

The initial iterate uh is obtained by the full multigrid method [1], [6]. For each 
multigrid process, the convergence factor p = lim n -co pn is approximated from the 
finite set Pn I} 

Example 1. On the square [0, 1] x [0, 1] we consider the linear convection problem 

au au au - + a- + b- = 0, at ax ay 
where a = cost), b = sin, 4 e (0, 7r/2). Hence, 

f(u) = f+(u) = au, f-(u) = 0, 

g(u) = g+(u) = bu, g-(u) = 0. 

The boundary conditions (steady-state problem) are 

u(0?,y)=1, O<y<l, 

u(x,O) = 0, < x <1 

The exact solution of the steady-state problem is trivially 

uex(x, y) = 1 if bx - ay < 0, 

Uex(X, Y) = 0 if bx-ay > 0. 

Thus, the exact solution contains a contact discontinuity. 
The observed convergence factors of the multigrid solution process have been 

calculated for several angles 4 and for several meshsizes. The results are summarized 
in Table 4.1. 

TABLE 4.1 

The approximate convergence factors of the multigrid process for 
several angles 4 and for several equidistant meshes with size h. 

4) 150 300 450 600 750 

1/8 0.11 0.13 0.13 0.13 0.11 

1/16 0.17 0.25 0.27 0.25 0.17 

1/32 0.29 0.38 0.39 0.38 0.29 
1/64 0.41 0.44 0.47 0.43 0.42 
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FIGURE la FIGURE lb 

FIGURE Ic FIGURE id 

FIGURE 1 

Contour plots of the numerical solution of the first- and second-order scheme, p = 150. 

Figures la and lb are solutions on a 32 X 32 mesh and Figures ic and id are solu- 
tions on a 64 X 64 mesh. Figures la and ic are obtained with the first-order scheme 
and Figures lb and Id with the second-order scheme. 

From Table 4.1 we conclude that the convergence factors are satisfactory and only 
weakly dependent of 4. More meshes are needed to estimate the limit values of the 
convergence factors when h I 0. We have applied the same multigrid strategy for the 
fully one-sided second-order upwind scheme (4 1). The convergence factors were 
almost the same as in Table 4.1 (no significant difference). In Figures 1, 2, and 3 we 
show some numerical solutions. These figures correspond to 4 = 150, 300 and 450, 

respectively. 
Example 2. On the rectangle [-1, 1] x [0, 1] we consider the linear convection 

problem 
au au au 
- +y- -x- = 0. 
at ax ay 

Hence, this problem can be written in the form (2.1), (2.2) with 

f+(x,y,u) -yu, f-(x,y,u) 0, 

?+(xu y f ) = xu if x 0, g (x,y,u) = [0 if x < 0, 
o ifx > 0, ~-xu if x >0. 
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FIGuRuE 2a FIGURE 2b 

FIGURE 2c FIGURE 2d 

FIGURE 2 

AsFigurelbutu= 300. 

The boundary conditions (steady-state problem) are 

u(x,0) = 0 if x < -0.65, 
u(x,0) = 1 if -0.65 < x < -0.35, 
u(x,O)=0 if-0.35<x<0, 

u(-1,y)= 0 0 by < 1, 
u(x,) =1 0 < x <1. 

The exact solution is 

Uex(x, y) = 1 if 0.35 < jx2 + y2 < 0.65, 

Uex (x, y) = 0 otherwise. 

Computations have been carried out on a 32 x 16 mesh (h = 1/16) and on a 
64 X 32 mesh (h = 1/32). The observed convergence rates for the multigrid process 
were 0.29 and 0.44, respectively. In Figure 4 we show the numerical solution on the 
64 X 32 mesh. 
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/Z 

FIGURE 3a FIGURE 3b 

FIGURE 3c FIGuRE 3d 

FIGURE 3 
As Figure I but 4 = 45 0. 

Example 3. On the square [0,1] X [0,1] we consider the nonlinear problem 

a 
U + a_ f(U) + a g(u) = O. 

where 

f(U)= 12 g(u)= U. 

Hence, 

f+(U) = U{+?}2, f-(U) = {U-t}2, g+(u) = U, g (U) = 0, 

where u+= max(u, 0), u-= min(u,0). 
The steady-state equation is 

a ai 2 =o 

i.e., the inviscid Burgers' equation. Two different sets of boundary conditions have 
been considered. 
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FIGURE 4a 

FIGURE 4c 

FIGURE 4b 

FIGURE 4 

Numerical solutions for Example 2. 

A contour plot of the first-order solution is shown in Figure 4a, the second-order 
solution in 4b. In Figure 4c the solutions at the boundary y = 0 are shown for the 
first- and second-order scheme. 

Problem 3a. With the boundary conditions 

u(Oy)=1, O<y<l, i 

u(1,y)= -1, O<y<l, 

{u(x,0)=1-2x, O<x<1, 1.0 

A B 
the solution is (see Figure a) 0.5 

uex(x y) = 1 if (x, y) in region A, 

uex(x, ) = -1 if (x, y) in region B, 0 

u - 2x 0.5 1.0 
Uex(X, A = I1-2y if (x, y) in region C. FIGURE a 

The regions A and B are separated by a shock, originating at (x, y) = (0.5, 0.5). 
Computations have been carried out on a 32 x 32 and a 64 X 64 grid. The 

observed convergence factors for the multigrid process were 0.49 and 0.46, respec- 
tively. In Figure 5 we show contour plots of the numerical solutions on the 64 x 64 
grid. Figure 5a shows the first-order, and Figure 5b the second-order solution. 
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L/ / //L l II\ \\'\\\ 11l li /Il E4 \ ''g\- 
FIGURE 5a FIGURE 5b 

FIGURE 5 

Contour plots of the first- and second-order solutions of the inviscid Burgers' 

equation (considered as a boundary value problem) with a shock. 

Problem 3b. With the boundary conditions 

uu(0,y) = 1.5, 0 <y < 1, 
uu(1,y)=-0.5, O<y<l, Y y 

{u(x,O) = 1.5-2x, 0 < x < 1, 1.0 - 

A 
the solution is (see Figure b) B 

0.5-B 

Uex(x, y) = 1.5 if (x, y) in region A, c 

Uex(x, y) = -0.5 if (x, y) in region B, 0.75 0 

Uex(X, A) = 1.5 - 2x if in region C. FIGUREb 
1- 2y FGR 

Regions A and B are separated by an oblique shock, originating at (x, y)= 

(0.75, 0.50). 
Again, computations have been carried out on a 32 x 32 and a 64 x 64 mesh. The 

observed convergence factors were 0.35 and 0.45, respectively. In Figure 6 we show 
the contour plots of the numerical solutions on the 64 x 64 grid. Figure 6a shows 
the first-order, and Figure 6b the second-order solution. 
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FIGURE 6a FIGURE 6b 

FIGURE 6 

As Figure 5 but with an oblique shock. 

5. Conclusions. In this paper, it is shown that the multigrid method can be an 
efficient solution procedure to obtain steady-state solutions of second-order accu- 
rate, monotone upwind schemes for hyperbolic conservation laws, also when the 
solution contains an (oblique) contact discontinuity or shock. The key to success for 
the multigrid method is the efficient relaxation (smoothing) procedure. It has been 
shown that a symmetric block Gauss-Seidel underrelaxation (each block is associ- 
ated with 4 cells) is an efficient smoothing operator. Furthermore, the coarse-grid 
operators have been obtained by a Galerkin approximation which has the important 
practical consequence that coarse-grid operators are first-order accurate. Hence, 
simple relaxation methods, such as point Gauss-Seidel relaxation, are efficient on the 
coarser grids. 

By the use of a definition of monotonicity, based on positivity of coefficients, it is 
shown that there is no conflict between second-order accuracy and monotonicity 
(neither in one nor in more dimensions). The limiter, applied in the second-order 
scheme to preserve monotonicity is the smooth limiter of van Albada. 

The ideas described in this paper can be generalized to systems of hyperbolic 
conservation laws as, e.g., the Euler equations. A report on this application is in 
preparation. 
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